Uneven Image Dehazing by Heterogeneous Twin Network
نویسندگان
چکیده
منابع مشابه
Gated Fusion Network for Single Image Dehazing
In this paper, we propose an efficient algorithm to directly restore a clear image from a hazy input. The proposed algorithm hinges on an end-to-end trainable neural network that consists of an encoder and a decoder. The encoder is exploited to capture the context of the derived input images, while the decoder is employed to estimate the contribution of each input to the final dehazed result us...
متن کاملA Cascaded Convolutional Neural Network for Single Image Dehazing
Images captured under outdoor scenes usually suffer from low contrast and limited visibility due to suspended atmospheric particles, which directly affects the quality of photos. Despite numerous image dehazing methods have been proposed, effective hazy image restoration remains a challenging problem. Existing learning-based methods usually predict the medium transmission by Convolutional Neura...
متن کاملImage and video dehazing
Outdoor images often suffer from low contrast and limited visibility due to haze, small particles such as dust, mist, and fumes which deflect light from its original course of propagation. Haze has two effects on the image: it weaken the imgage contrast and also adds an additive component to the image, so-called airlight. Recovering a haze-free image can restore the visibility of the scene and ...
متن کاملEnhanced Variational Image Dehazing
Images obtained under adverse weather conditions, such as haze or fog, typically exhibit low contrast and faded colors, which may severely limit the visibility within the scene. Unveiling the image structure under the haze layer and recovering vivid colors out of a single image remains a challenging task, since the degradation is depth-dependent and conventional methods are unable to overcome t...
متن کاملDensely Connected Pyramid Dehazing Network
We propose a new end-to-end single image dehazing method, called Densely Connected Pyramid Dehazing Network (DCPDN), which can jointly learn the transmission map, atmospheric light and dehazing all together. The endto-end learning is achieved by directly embedding the atmospheric scattering model into the network, thereby ensuring that the proposed method strictly follows the physicsdriven scat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3003784